
Nach der in dieser entwickelten Auffassung ist 
der Satz von der Konstanz der Masse ein Spezialfall des Energieprinzips

Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie
Albert Einstein  Ann  Phys  20  627 (1906)Albert Einstein, Ann. Phys. 20, 627 (1906)
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E=mc2



Brief an den Herausgeber des LIFE Magazines 19. Juni 1948

Albert Einstein an Lincoln Barnett

Es ist nicht von der Masse M eines bewegten Körpers zu 
sprechen, da für M keine klare Definition gegeben werden 
kann. Man beschränke sich besser auf die Ruhe-Masse. 
Daneben kann man ja den Ausdruck für Momentum und 
Energie geben, wenn man dass Trägheitsverhalten rasch 
bewegter Körper angeben will. 
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Thema E=mc²

Lichtimpulsp
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relativistisch betrachtet
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c
Diagnose
Es gilt Impulserhaltung, wie aus klassischer Mechanik bekannt 



relativistisch betrachtet

Impulserhaltungp g
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cm WaggonWaggon






Diagnose
Wagen stoppt an ANDERER Stelle aufgrund Impulserhaltung



relativistisch betrachtet

Impulserhaltungp g
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Diagnose
Wenn Impulserhaltung gilt, bewegt sich Schwerpunkt Waggon nicht

ggWaggon



relativistisch betrachtet

Impulserhaltungp g
Symptome
Wenn Licht die physikalische Eigenschaft Masse hätte

 WaggonWaggonlightinitial
Waggon

Lm
CoM



 2/0

sLichtpulse desEmission vor Zeitpunkt 
vorher

 WaggonWaggoninitial
Waggon

Waggonlight
Waggon

m
Lm

CoM

m










2/

Waggonlight m

sLichtpulsedesAbsorptionnachZeitpunkt
nachher

   
sLichtpulse desAbsorptionnach Zeitpunkt 

2/

Waggonlight

WaggonWaggonWaggonWaggonWaggonlightfinal
Waggon m

DLmDL
CoM









seinerfüllt  Gleichung folgende muss gilt,immer LTUNG IMPULSERHA Da

bewegt NICHT Vorgang demin sich hat  emsGesamtsyst dest Schwerpunkder aber  bewegt, der Waggonsich hat Zwar 

finalinitial
WaggonWaggon

CoMCoM 

Einsteingleichung 8

Diagnose
- tatsächlich hat sich Wagen bewegt, obwohl das Photon keine Masse hat 
- Lichtpuls muss man äquivalente Masse μ zuschreiben



relativistisch betrachtet

Impulserhaltungp g
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Diagnose
- Äquivalente Masse des Lichts berechnet mit makroskopisch messbaren Größen
- aus diesem Ausdruck werden wir jetzt die Einsteingleichung abzugleichen 



relativistisch betrachtet

Impulserhaltungp g
Symptome
Wegstrecken mit bekannten Parameter ausdrücken
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relativistisch betrachtet

Impulserhaltungp g
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Diagnose
- Masse und Energie sind austauschbare Konzepte
- jedem Objekt mit Masse kann eine Ruheenergie zugeordnet werden



relativistisch betrachtet

Energieg
Symptome
Nur im Ruhesystem des Körpers wird Masse eines Objekts richtig bestimmt
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Diagnose
- Ruhemasse ist Masse eines Objekts in seinem RUHESYSTEM
- E=m0c² ist potenzielle Energie eines Körpers, genannt seine RUHEENERGIE



physikalisch relevant
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Einsteins Bemerkungen 

E=mc²

Es existiert vorläufig nicht der leiseste Anhalt dafür, 
ob und wann jemals diese Energiegewinnung erzielt werden könnte (1920)j g g g ( )

Einige neuere Untersuchungen von Enrico Fermi und Leo Szilard  die mir im Manuskript 

Einsteingleichung 14

Einige neuere Untersuchungen von Enrico Fermi und Leo Szilard, die mir im Manuskript 
zugänglich wurden, lassen mich erwarten, daß das Element Uran zu einer neuen und 

wichtigen Energiequelle in der unmittelbaren Zukunft werden kann... (1939)



Welche Abmessungen hat das Elektron?
Symptome
Tatsächliche Größe des Elektrons kann nicht experimentell bestimmt werden
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Diagnose
Aus den Naturkonstanten kann die Größe fundamentaler Größen bestimmt werden



relativistisch betrachtet

Impulsp
Symptome
- Erhaltungssätze wie Energie- und Impulserhaltung sind die Eckpfeiler der Physik
- gilt Impulserhaltung, wenn sich Beobachter in unterschiedlichen Bezugssystem befinden?
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Diagnose
- im Gegensatz zu klassischer Physik strebt pSRT gegen Unendlich bei hohen Geschwindigkeiten
- relativistische Version garantiert Impulserhaltung in allen Bezugssystemen



relativistische Missverständnisse
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- Masse eines Körpers verändert sich NICHT mit der Geschwindigkeit
- Beobachter kann Masse eines ruhenden Körpers über Gravitation bestimmen
- Masse bewegter Körper kann unabhängig vom Impuls bestimmt werden



relativistischer Anschub 

Kraftstoß
Symptome
- Kraftstoß beschreibt kennzeichnet zeitliche Wirkung einer Kraft auf Körper 
- gleicher Impuls von Beobachter auf ruhenden und bewegten Körper mit jeweils gleicher Masse
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Diagnose
- Uhren im bewegten Raumschiff gehen langsamer

bewegtruhend JJ 
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- unterschiedlicher Kraftstoß führt zu unterschiedlichen Beschleunigungen
- Schlussfolgerung könnte sein, dass Massen der Raumschiffe nicht identisch
- alternative Schlussfolgerung wäre, dass bewegtes Raumschiff größere Masse hat 



relativistisch betrachtet
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Diagnose
- Beschleunigung durch Kraft hängt davon ab, ob parallel oder senkrecht zur Geschwindigkeit
- in der Regel ist Beschleunigung nicht parallel zu wirkenden Kraft  
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1901-1915 

Kaufmann-Bucherer-Neumann Experimentep
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Diagnose 
Radioaktiver Beta-Zerfall erzeugt Elektronen (-Teilchen) mit stark unterschiedlichen Energien



Newton spricht

Lorentzkraft
Symptome
Geladenes Teilchen tritt mit Impuls in Magnetfeld ein
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Diagnose
Nach klassischer Mechanik ist Radius der Kreisbahn proportional dem Impuls des Teilchens



Newton spricht

Lorentzkraft
Symptome
Geladenes 10 MeV Teilchen tritt mit klassischem Impuls in Magnetfeld ein
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Andere Möglichket der Analyse von Energie und Impuls

Thomson parabola spectrometerp p
Symptome
Schnelle Teilchen werden in einem parallelem elektrischen und magnetischen Feld analysiert 

Felden elektrisch im Ablenkung
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Felden magnetisch im Ablenkung

v/1Mx

v/1ey

FeldenmagnetischundenelektrischstatischenimnenParabelbah

Diagnose
- elektrisches Feld lenkt die Teilchen in der vertikalen Ebene ab und analysiert kinetische Energie

Felden magnetisch unden elektrischstatischenimnen Parabelbah
2
ee xconsty 
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elektrisches Feld lenkt die Teilchen in der vertikalen Ebene ab und analysiert kinetische Energie
- magnetisches Feld lenkt Teilchen in der horizontaler Ebene ab und analysiert Impuls 
- als Resultat der sich überlagernden Felder ergeben sich Parabelbahnen
- Konstante hängt von Geometrie des Instruments und dem Ladung-zu-Masse Verhältnis ab   



1901-1915 

Kaufmann-Bucherer-Neumann Experimentep

Di
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Diagnose
- Abnahme e/m Verhältnis bei Geschwindigkeit an -Teilchen nahe Lichtgeschwindigkeit 
- Masse des Elektrons erhöht sich mit höherer Geschwindigkeit des Teilchens

A. H. Bucherer Die experimentelle Bestätigung des Relativitätsprinzips Ann. Physik, 28, 513 (1909)



Thema E=mc²

Masse
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Küchenchemie

Kuchen backen

In der klassischen Küche sicherlich richtig
200 g Mehl+50g Butter + 50 g Eier = 300g Teig 200 g Mehl+50g Butter + 50 g Eier = 300g Teig 
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Diagnose
Nach Relativitätstheorie ist Summe der Massen der Einzelteile geringer als Masse des Produkts



Grundfeste der Chemie

Massenerhaltung

Prinzip der Massenerhaltung (1789)
Nichts wird bei Operationen künstlicher oder natürlicher Art geschaffen Nichts wird bei Operationen künstlicher oder natürlicher Art geschaffen 
und es kann als Axiom angesehen werden, dass bei jeder Operation eine gleiche 
Quantität Materie vor und nach der Operation existiert

Antoine-Laurent Lavoisier 
1793-1794

Das Gesetz der konstanten Proportionen (1794)
Elemente in chemischer Verbindung kommen immer im gleichen Massenverhältnis vor

(60%)Cl(40%)Na
ridNatrumchlo
etzung Zusammenschemische



Gesetz der multiplen Proportionen (1803) 

( )( )
Joseph Louis Proust 
1754-1826

OHg18Og16Hg2 OHO2H 

Gesetz der multiplen Proportionen (1803) 
Vereinen sich zwei Elemente zu mehreren Verbindungen, so stehen die 
betreffenden Gewichtsverhältnisse im Verhältnis einfacher kleiner Zahlen
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2

OH g34O g32gH2
OHg18Og16Hg2




2222

22

O2HO22H
OHO2H




John Dalton 
1766-1844



relativistisches Gedankenexperiment

Massenzuwachs
Symptome
- Joules Wärmeäquivalent (1850) liefert Erkenntnis: Wärme ist Form von Energie
- in der Relativitätstheorie müssen Energie- und Impulserhaltungssatz modifiziert werden

E i  d I l  i d i ht h  bhä i  i d  - Energie und Impuls sind nicht mehr unabhängig voneinander 
- Masse ist eine andere Form potenzieller Energie

Betrachte inelastischen Stoß, bei dem die kinetische Energie in potenzielle Energie umgewandelt wird 
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Diagnose
Durch inelastischen Stoß hat sich Masse Gesamtobjekts um Betrag kinetischer Energie erhöht 



Sprinter, relativistisch betrachtet
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Diagnose
Änderung der Masse-Energie ist im Alltag vernachlässigbar gering



relativistisch betrachtet

Masse

Einsteingleichung 33



relativistisch betrachtet

Energieerhaltungg g
Symptome
In abgeschlossenem System ist Summe kinetischer und potenzieller Energie konstant

Systems eines gieGesamtener
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liefert Überschuss an Energie
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Diagnose
- Energietransfer von Masse (Ruheenergie) in andere Energieform kostet Energie
- Energieerhaltungssatz fordert, dass Aufnahme von Energie durch Körper die Masse verringert



relativistisch betrachtet

Energieerhaltungg g
Symptome
In Sonne wird Energie bei Fusion von leichten Atomkernen freigesetzt
- Deuterium und Tritium 

Bei der Kernfusion werden 
enorme Energien freigesetzt

Einsteingleichung 35

Diagnose
Thermischer Energie muss aufgewendet werden, um Fusionsreaktion auszulösen



Diagnose
l ld h b
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- nur wenige Elemente wie Gold haben nur ein einziges Istotop
- Au hat 79 Protonen und 118 Neutronen und sollte Masse von 197 amu aufweisen
- tatsächlich bestimmt man die Masse des Goldatoms mit 196.97



relativistisch betrachtet

Massen vs Energieg
Symptome
- potenzielle Energie steigt an, wenn man die Ladungen separiert
- Gesamtenergie bleibt erhalten obwohl sich Abstand erhöht hat
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Einsteingleichung 37

Diagnose
- im Wasserstoffatom bindet Elektron an Proton mit Energie von 13.6 eV
- Energieanstieg bei Seperation wird den Massen zugeführt 
- Einzelsteile werden um 13.6 eV schwerer



relativistisch betrachtet

Deuterium
Symptome
Deuterium ist ein sogenanntes Isotop des Wasserstoff und besitzt ein zusätzlich Neutron im Kern
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Diagnose
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ag ose
- Bindungsenergie im Kern ist signifikant höher (MeV gegenüber eV)
- Reduzierung der Masse durch Wechselwirkungskräfte nennt sich MASSENDEFEKT
- näheres dazu im Kapitel Kernphysik



Thema E=mc²

Energie-Impulssatzg p
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relativistisch betrachtet

Kinetische Energieg
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Diagnose
- im Grenzfall geringer Energien gilt klassischer Ausdruck
- Körper auf relativistische Geschwindigkeiten zu beschleunigen kostet enorme Energiemenge 



klassischer Grenzwert relativistischer Bewegung
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Diagnose
Im Grenzfall kleiner Geschwindigkeiten
ergibt sich aus relativistischer kinetischer Energie der klassische Ausdruck nach Newton



relativistisch betrachtet

Energie-Impuls Erhaltungssatzg p g

sagtNewton

Symptome
In elastischen und inelastischen Stößen gelten Energie- und  Impulserhaltung
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Diagnose
- Gesamtenergie eines Systems setzt sich zusammen aus Beträgen aus Ruheenergie und Impuls
- Energie und Impuls sind in spezieller Relativitätstheorie eng verknüpft
- für Lichtgeschwindigkeit gegen UNENDLICH ergibt sich Ergebnis der klassischen Physik 



Energie-Impuls Erhaltungssatz

Relativistischer Pythagorasy g
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Impuls und Energiezwischen 



relativistisch betrachtet

Massenzuwachs
Symptome
Körper mit einer Ruhemasse erfährt relativistischen Massenzuwachs

SRT
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Diagnose
- Massenzunahme und Längenabnahme in Abhängigkeit vom Geschwindigkeitsverhältnis v/c
- Masse Objekt wird schwerer bei gleichzeitiger Erhöhung der Dichte 



Einstein spricht

Lorentzkraft
Symptome
Geladenes 10 MeV Teilchen tritt mit relativistischem Impuls in Magnetfeld ein
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0.53cm Radius lieferte Rechnung klassische
cm 8.1SRTr



1901-1915 

Kaufmann-Bucherer-Neumann Experimentep
Symptome
- im Kaufmannexperiment wird nicht die Masse des Teilchens, sondern Verhältnis e/m gemessen
- Änderung im Verhalten kann aber nicht Veränderung der Ladung zugeschrieben werden

nicht! esgibt  Gleichung solche eine

0 1 SRTee 
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Diagnose
- Wert der Elementarladung ist unabhängig von Geschwindigkeit des Teilchens
- wäre das nicht so, würde sich Ladungszustand neutralen Teilchens bei Bewegung ändern



Einsteingleichung 48



Mechanik ohne Masse

Newtonsche Geister
Symptome
In der Newtonschen Mechanik gibt es KEINE masselosen Teilchen
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Diagnose
- masselose Teilchen haben keinen Impuls

222111 FamamF 
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- masselose Teilchen haben keine kinetische Energie
- Newton 2: masselose Teilchen üben keine Kraft aus
- Newton 3: masselose Teilchen üben keine Kraft auf andere Teilchen aus



relativistisch betrachtet

Masselose Teilchen
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Diagnose
- Gleichung erfüllt, wenn sich Teilchen mit Lichtgeschwindigkeit bewegt
- ALLE masselose Teilchen (speziell Photonen) bewegen sich mit Lichtgeschwindigkeit



Energie-Impuls-Erhaltung
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Diagnose
Elektron-Positron Stoß bei relativistischem Impuls von 1.55 GeV/c generiert ein neues Teilchen



Energie-Impuls-Erhaltung
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Diagnose
J/Teilchen hat Ruhemasse von 3.1 GeV


