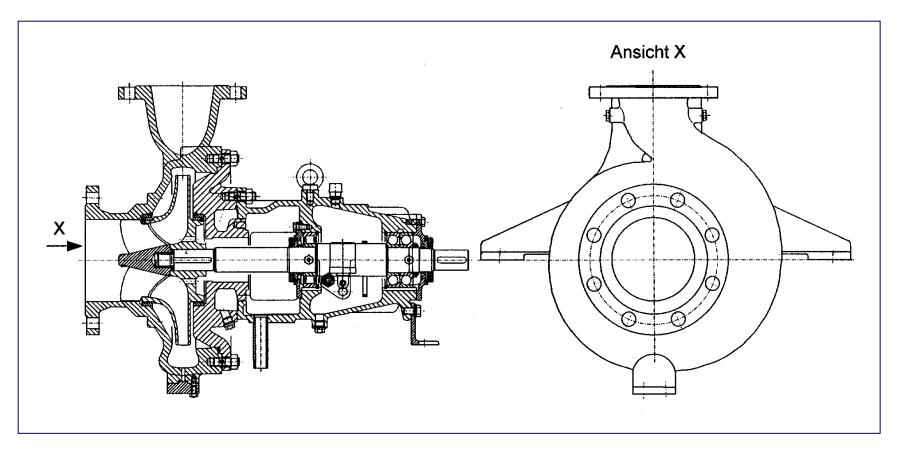


Wintersemester 2010/2011

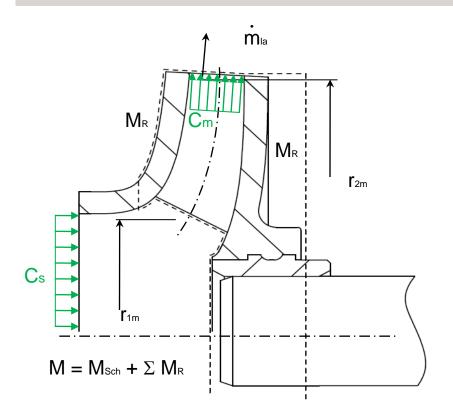
Strömungsmaschinen I

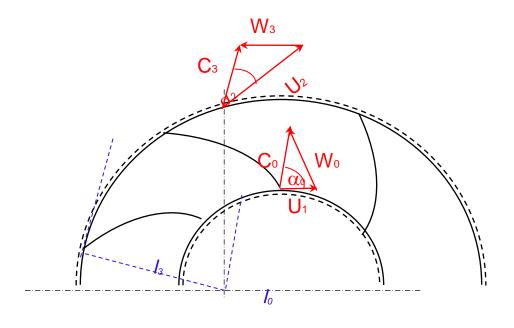
Prof. Dr. Hendrik Wurm


Lehrstuhl für Strömungsmaschinen

Entwurf von Radialmaschinen,

Ähnlichkeit


Optimierung von Radialmaschinen



Einstufige Spiralgehäusepumpe mit Lagerträger, Sulzer Pumpen AG

Anwendung des Drehimpulssatzes

Kontrollvolumen

Bilanz des Drehimpulses

Bilanzfläche 1:

Massestrom $\dot{m_{La}}$ mit dem Drehimpuls $\dot{m_{La}}$ $\dot{r_{1m}} \cdot C_{ou}$

Bilanzfläche 2:

 $\text{Massestrom} \quad \text{m}_{\text{La}} \text{ mit dem Drehimpuls} \qquad \quad \text{m}_{\text{La}} \; r_{\text{2m}} \cdot C_{\text{3u}}$

Die statischen Drücke an den Bilanzflächen und die radialen Komponenten der Geschwindigkeit erzeugen keine Kräfte in Umfangsrichtung und werden deshalb nicht berücksichtigt.

an den festen Berandungen

Moment wegen der Radseitenreibung M_R

an der Welle

übertragenes Drehmoment M

Bilanz der Momente

$$M = M_{sch} + \Sigma M_{R}$$

an der Welle übertragenes Moment

$$M_{sch} = \dot{m} (r_{2m} c_{3u} - r_{1m} c_{ou})$$

von den Schaufeln übertragenes Moment

mit
$$u = \omega r$$

$$P_{sch} = M_{sch} \cdot \omega = m (u_{2m} c_{3u} - u_{1m} c_{ou})$$
 Leistung

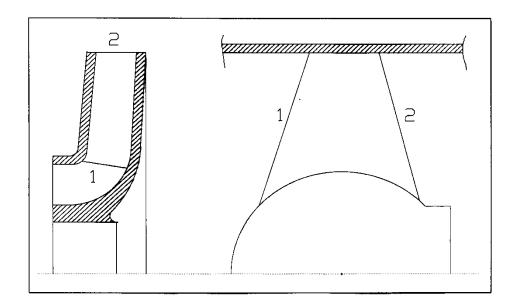
$$Y_{sch} = \frac{P_{sch}}{\dot{m}}$$

spezifische Förderarbeit

$$Y_{sch} = u_{2m} c_{3u} - u_{1m} c_{ou}$$

Euler'sche Turbinengleichung (1754)

Ziel: Realisierung des geforderten Dralls C3u * r2m


$$Y_{Sch} = Y_{th,\infty} = \omega (r_2 c_{3u} - r_1 c_{0u})$$

$$Y_{th,\infty} = u_2 c_{3u} - u_1 c_{0u}$$

$$H_{th,\infty} = \frac{Y_{Sch}}{g}$$

$$g \times H_{th} = \left[U_2 C_{2U} - U_1 C_{1U} \right]$$
 Gleichung von L. Euler

$$g \times H_{th} = \begin{bmatrix} \frac{C_2^2 - C_1^2}{2} + \frac{U_2^2 - U_1^2}{2} + \frac{W_1^2 - W_2^2}{2} \\ A & B & C \end{bmatrix}$$

Term A:
abhängig von den
Durchmessern
des Saug- und Druckstutzens

Term B: abhängig vom Durchmesserunterschied zwischen Ein- und Austrittskante

Term C: abhängig von der Gestaltung des Innenraums im Laufrad

Vordrall

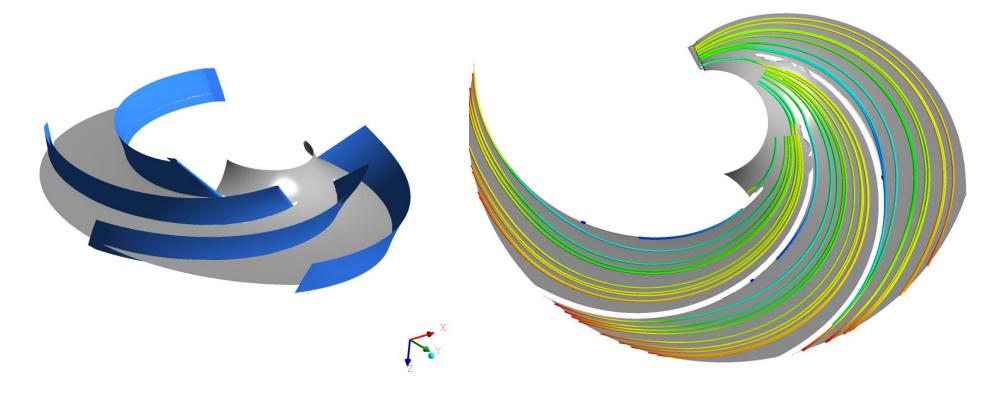
$$Y_{sch} = \mathbf{u}_2 \mathbf{c}_{3u} - \mathbf{u}_1 \mathbf{c}_{ou}$$

$$\mathbf{c}_{uo} \neq 0$$
 $(\alpha_0 \neq 90^\circ)$

Mitdrall $(\alpha_0 < 90^\circ)$ Förderhöhe wird reduziert

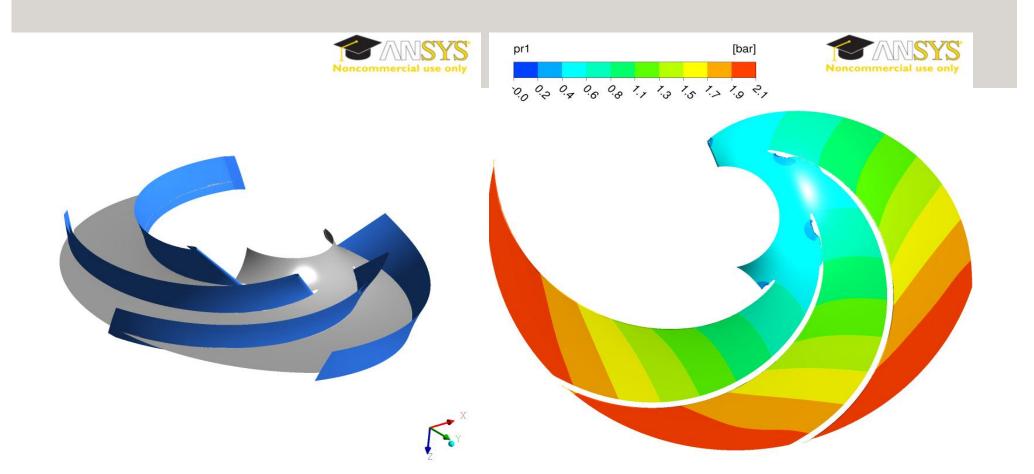
Gegendrall ($\alpha_0 > 90^\circ$) Förderhöhe wird vergrößert

Minderumlenkung, Deviationswinkel – Verhältnisse am LR- Austritt


In der Realität ist die Abströmung aus dem Laufrad nicht schaufelkongruent.

- Ursachen: 1) der relative Kanalwirbel (Sekundärströmung von der SS zur DS durch Corioliskräfte)
 - 2) Reduzierung des Druckunterschiedes zwischen SS und DS im "Schrägabschnitt"

Deviationswinkel:
$$\delta=eta_S-eta_3$$
 $eta_S=eta_2$



Radialrad mit Schaufeln

Minderumlenkung



Radialrad

Statischer Druckaufbau in den Laufradkanälen

Auswirkung der Minderumlenkung

Berechnung der Minderumlenkung

Verfahren von Pfleiderer, Stepanoff, Gülich

▶ Exemplarisch wird das Verfahren von Pfleiderer gezeigt

Empirisches Verfahren zur Abschätzung der Minderumlenkung

$$Y_{th\infty} = u_2 c_{3u} - u_1 c_{0u}$$
 Gleichung von Leonard Euler

$$Y_{th} = rac{Y_{th\infty}}{p+1}$$
 p ... Minderleistungsfaktor nach Pfleiderer

Entwurf des Laufrads einer Radialmaschine

Verfahren von Pfleiderer

$$p = \frac{Y_{th\infty}}{Y_{th}} - 1 \qquad p = \psi' \frac{r_2^2}{Z \cdot S}$$

Kreiselpumpe mit beschaufeltem

Leitrad

$$\psi' = 0.6 (1 + \frac{\beta_2^{\circ}}{60})$$

Spiralgehäuse

$$\psi' = (0,65...0,85) (1 + \frac{\beta_2^{\circ}}{60})$$

schaufellosem Diffusor

$$\psi' = (0.85...1.0) (1 + \frac{\beta_2^{\circ}}{60})$$

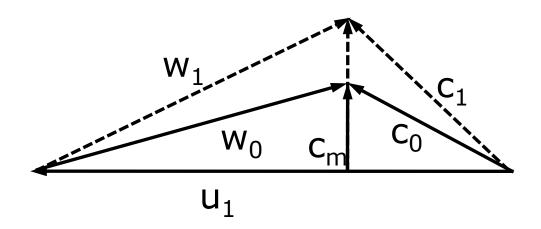
Statisches Moment der Stromlinie

$$S = \int_{r_1}^{r_2} r \, dx \Longrightarrow S = \sum_{r_1}^{r_2} r \Delta x$$

"incidence"- Verhältnisse am LR-Eintritt

$$Q = c_m \cdot A$$

 c_{0m} erhöht auf c_{1m} durch Schaufelversperrung


$$c_{1m} = \tau_1 \cdot c_{0m}$$

$$\beta_0 = \arctan \frac{c_{0m}}{u_1 - c_{0u}}$$

$$\beta_1 = \arctan \frac{c_{1m}}{u_1 - c_{1u}}, c_{1u} = c_{ou}$$

$$\tau_1 = \left(1 - \frac{z_{La} \cdot s_1}{\pi d_1 \sin \beta_1 \sin \lambda_1}\right)^{-1}$$

Auswirkung der Schaufelversperrung

Relativbahnwinkel

$$\beta_0 = \arctan \frac{c_{0m}}{u_1 - c_{0u}}$$

$$\beta_3 = \arctan \frac{c_{3m}}{u_2 - c_{3u}}$$

Entwicklung des Schaufelverlaufes

- Kreisbogen
- ▶ ß- Verlauf

$$w = \frac{c_m}{\sin \beta}$$

Ähnlichkeitsbeziehungen

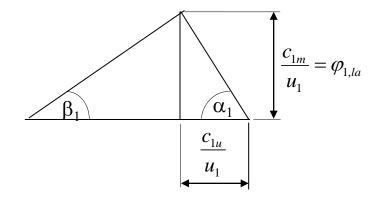
- a) geometrische Ähnlichkeit
- b) Dynamische Ähnlichkeit

geometrische Ähnlichkeit

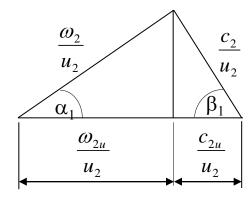
Alle Abmessungen von Großausführung und Modell haben das gleiche Maßstabsverhältnis.

z.B.
$$\lambda_D = \frac{D}{D_M}$$

dynamische Ähnlichkeit


$$\mathrm{Re} = \frac{v \cdot l}{v}$$
 Reynolds- Zahl, Verhältnis von Trägheits- und Zähigkeitskraft

$$Fr = \frac{v}{\sqrt{gl}}$$
 Froude- Zahl, Verhältnis von kinetischer und potentieller Energie


$$Eu = \frac{p}{\rho v^2}$$
 Euler- Zahl, Druckverhältnisse

Ähnlichkeit von Laufrädern

Eintritt

Austritt

Für geometrische ähnliche Laufräder werden die Geschwindigkeitsdreiecke allein durch c_m/u und c_u/u festgelegt

$$\varphi = \frac{\dot{V}}{\pi \, b \, d \, u}$$

Ähnlichkeit von Laufrädern

Druckzahl
$$\psi = \frac{2Y}{u_2^2}$$

Verhältnis der spezifischen Förderarbeit zur mit u gebildeten Geschwindigkeitsenergie $\psi=f(\varphi)$ ist eine dimensionslose Darstellung unabhängig von n und D2

Spezifische Drehzahl
$$n_q = n \frac{\sqrt{Q_{opt}}}{H_{opt}^{0.75}}$$

Entwurf des hydraulischen Teils

- Entwurf der Beschaufelung für Lauf- und Leiträder
- ▶ Entwurf des Gehäuses
- Numerische Optimierung
- ggf. experimentelle Optimierung

Phasen der Entwicklung eines Pumpenbauteiles (am Beispiel Laufrad)

Angewendete Methoden

Entwurf

Pfeiderer, Stepanoff,

Gülich

Konstruktion

2D/3D-CAD

Optimierung unter verschiedenen Gesichtspunkten, z.B. **strömungstechnisch**, mechanisch, technologisch

Numerische Verfahren

Versuche

Prototypenbau und -test

Modelle ⇒ Abguß

Stereolithografiemodell ⇒ Abguß

Kernfertigung mit Laser ⇒ Abguß

Mehrachsenfräsen

Serieneinführung

Gegeben:

1. Schritt: Bestimmung der Hauptabmessungen aus Erfahrungswerten

 \dot{V} , H, $NPSH_A$

$$\psi = f(n_q)$$

$$\frac{b_2}{D_2} = f(n_q)$$

$$\frac{D_2}{D_S} = f(n_q)$$

$$Z = f(n_q)$$

$$\dot{V_R} = \frac{\dot{V_N}}{\lambda_1}$$

2. Schritt: Entwurf eines Meridianschnittes

$$c_m = \frac{\dot{V}}{D b \pi}$$

- **3.** Schritt: Berechnung des Meridiangeschwindigkeitsfeldes und Festlegen der Lage von Ein- und Austrittskante
- **4.** Schritt: Bestimmung der Strömungswinkel α_0 , β_0 , α_3 , β_3 auf mehreren Stromlinien

5. Schritt: Bestimmung der Schaufelwinkel β_1 , β_2 z.B. mit dem Verfahren von Pfleiderer auf mehreren Stromlinien

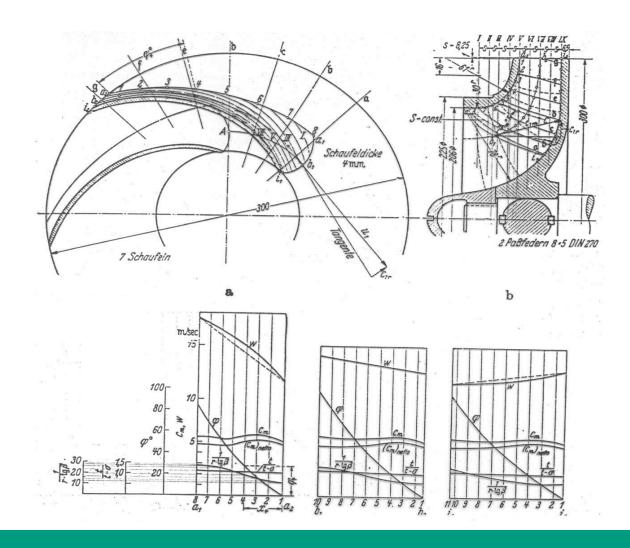
6. Schritt: Berechnung der Geschwindigkeitskomponenten und Festlegen eines ω - Verlaufes oder β -Verlaufes auf mehreren Stromlinien

7. Schritt: Korrektur des Meridiangeschwindigkeitsfeldes

Iteration

Geometrische Beschreibung des gesamten Entwurfs und ggf.

Glättung bzw. Anpassung an gewünschtes Fertigungsverfahren


- **8.** Schritt: Optimierung strömungstechnisch mit CFD
 - strukturmechanisch mit FEM

9. Schritt: Entwurf der Leiteinrichtung

10. Optimierung von Laufrad und Leiteinrichtung

Zuströmung berücksichtigen!

Beispiel

Berücksichtigung von Fertigungsverfahren und Kosten

- doppelt gekrümmte Schaufeln mit Freiformflächen
- doppelt gekrümmte Schaufeln mit Regelflächen
- einfach gekrümmte Zylinderschaufeln (2D- Schaufeln)

Numerische Optimierung

Ziele:

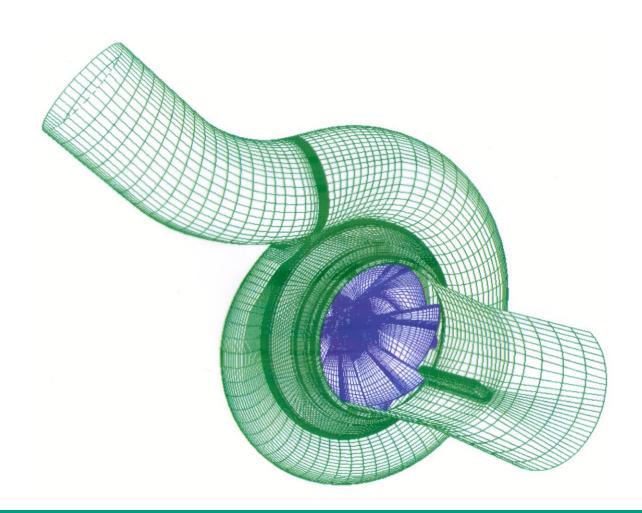
- Verlustminimierung
- Geräuschminimierung
- Vermeidung von Kavitation
- Kräfteminimierung
- Systemoptimierung

Herangehensweise an Berechnungsaufgaben

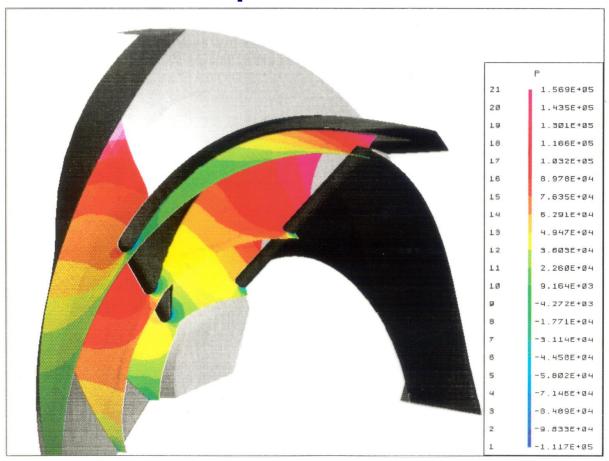
- 1. Rechennetz erzeugen
- 2. Rand- und Anfangsbedingungen festlegen
- 3. Berechnung
- 4. Ergebnisse auswerten

Zeitbedarf

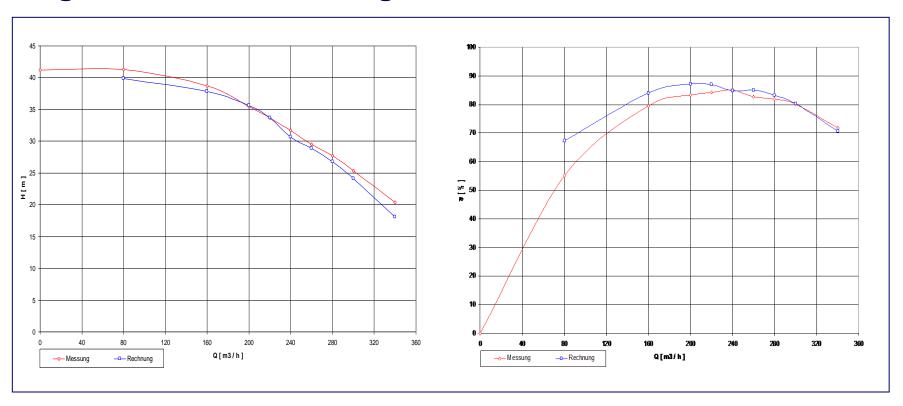
- 1.+2. einige Stunden bis mehrere Wochen
- 3. Beispiel 3D- Berechnung der Strömung in einem Pumpenlaufrad:
 - a) stationär: einige Stunden
 - b) instationär: Tage bis Wochen auf Parallelrechnern
- 4. abhängig vom Ziel der Berechnungen


Hydraulischer Wirkungsgrad durch Optimierung

Wirkungsgrad vor	Wirkungsgrad nach	Differenz	Hauptkomponenten optimiert
der Optimierung	der Optimierung		
[%] gemessen	[%] gemessen	[% Punkt]	
59	73	14	dünnere Welle, neues Laufrad, neuer Saugkrümmer
69	73	4	neues Laufrad, dünnere Welle
59	77	18	dünnere Welle, neues Laufrad, neuer Saugkrümmer


66 74 8 neues Laufrad und Spiralgehäuse

Rechengitter


BL 80/175

Position des Staupunktes

Vergleich zwischen Messung und Simulation

Numerische Optimierung des Laufrades einer Abwasserpumpe

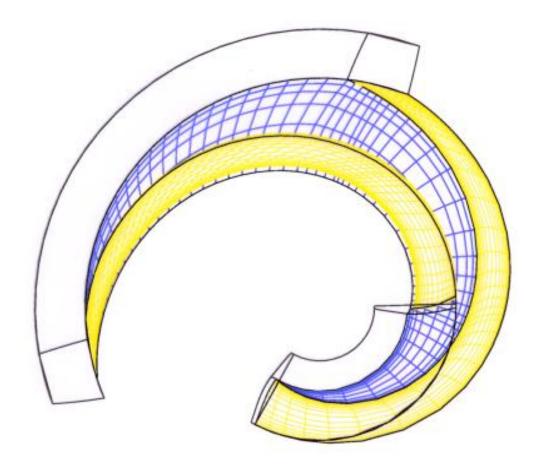
Auslegungspunkt:

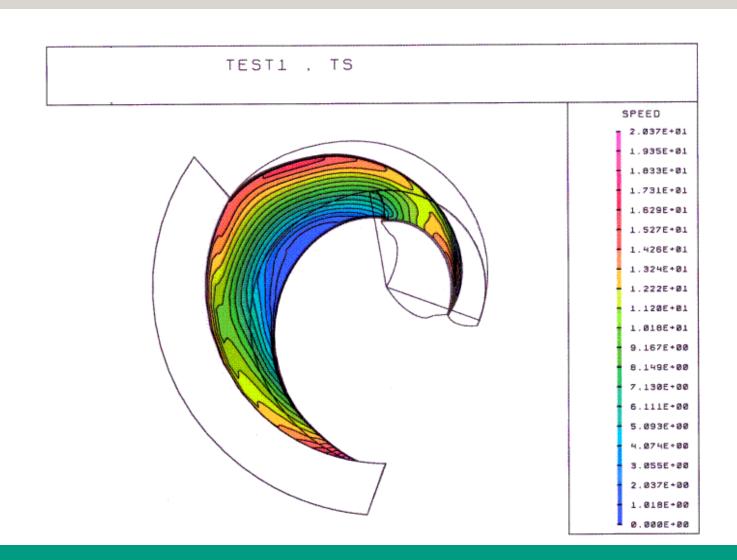
Förderhöhe H = 60 m

Volumenstrom Q = 350 l/s

Drehzahl n = 950 l/Min.

Schaufelzahl z = 3


Saugleitung d = 400 mm


Druckleitung d = 300 mm

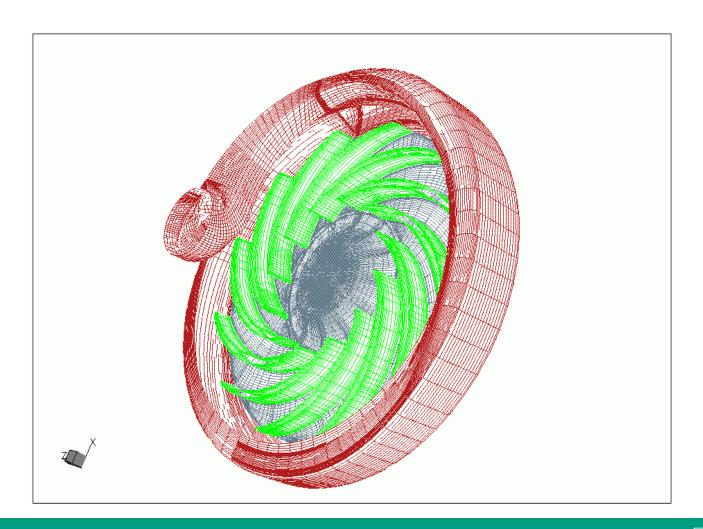
Abwasserpumpe Mitte

Geometrie

TEST2 . TS SPEED 2.007E+01 1.906E+01 1.806E+01 1.706E+01 1.605E+01 1.505E+01 1.404E+01 - 1.304E+01 1.204E+01 1.103E+01 1.003E+01 9.031E+00 8.028E+00 7.024E+00 6.021E+00 5.017E+00 4.014E+00 3.010E+00 2.007E+00 1.003E+00 0.000E+00

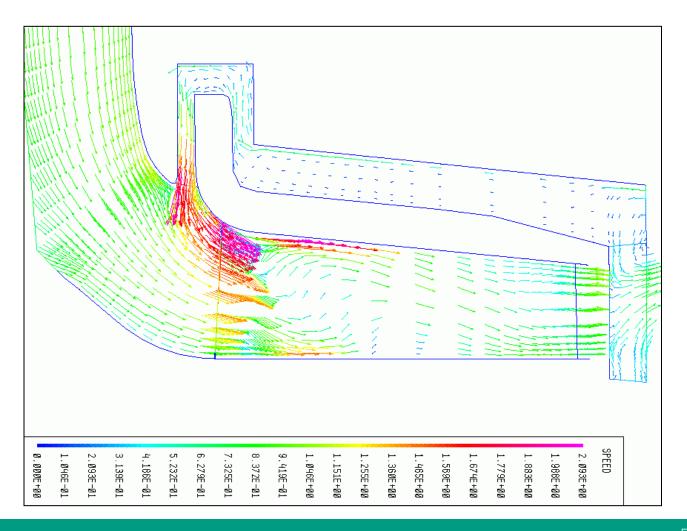
Numerische Optimierung des Laufrades einer Abwasserpumpe

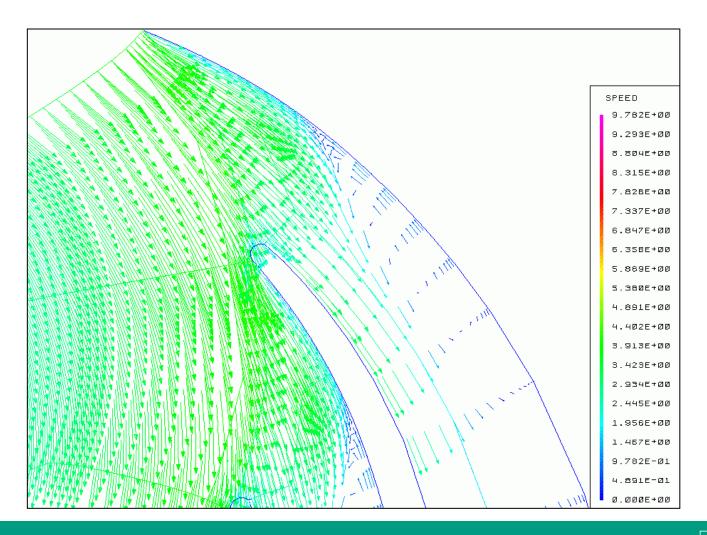
Ergebnisse:


Bei Verwendung des optimierten Laufrades ist bei gleichem Laufraddurchmesser

im Bestpunkt der Maschine

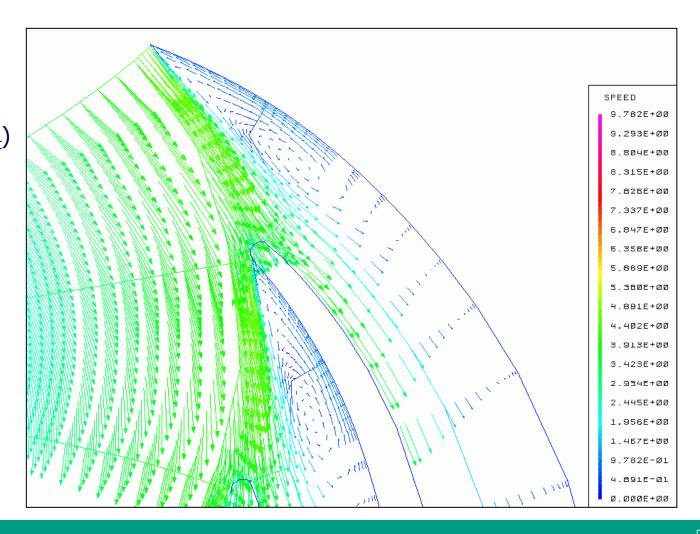
- die Förderhöhe um 11,4% größer
- der Wirkungsgrad um ca. 11 %- Punkte höher.


Rechengitter

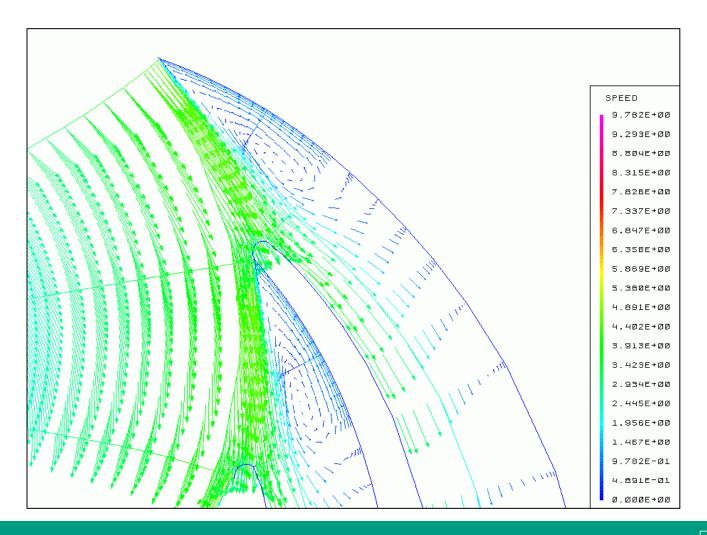

Meridionale

Geschwindigkeitsvert.

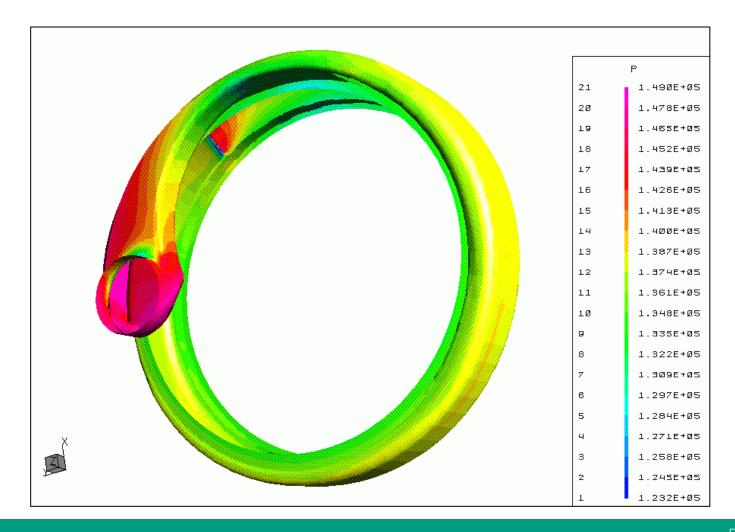
$$(Q=Q_{opt})$$



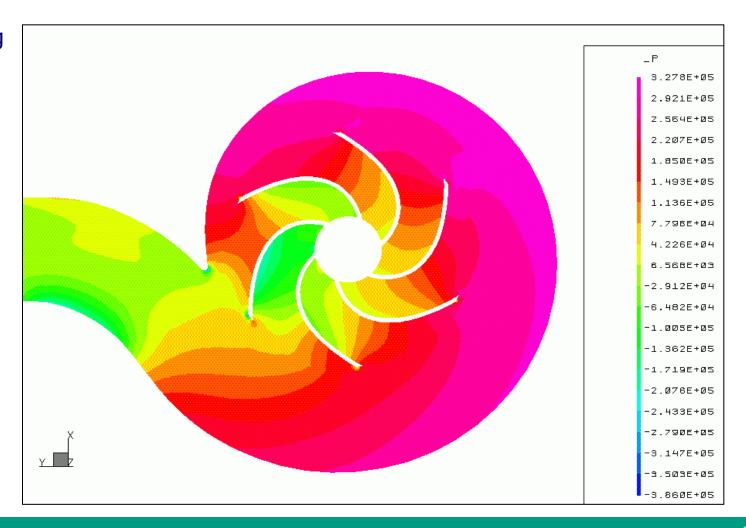
Geschwindigkeitsverteilung $(Q=Q_{opt})$



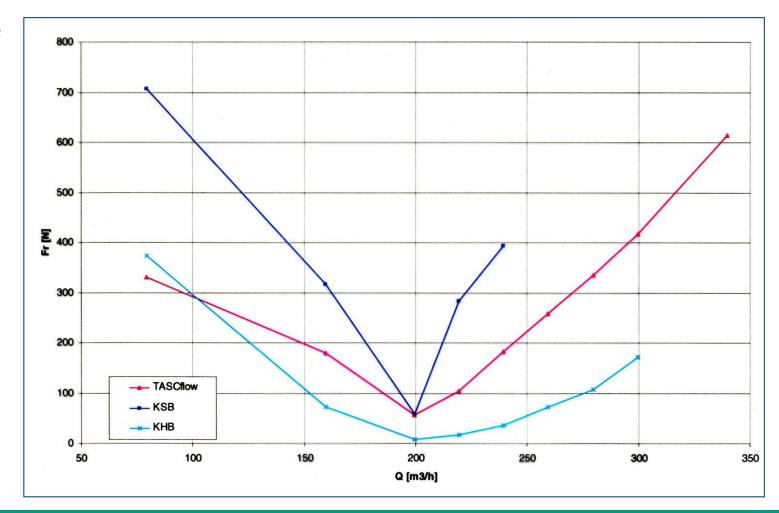
Geschwindigkeitsverteilung Mittelebene ($Q=Q_{opt}$)



Geschwindigkeitsverteilung $\label{eq:continuous}$ Nabe (Q=Q_{opt})

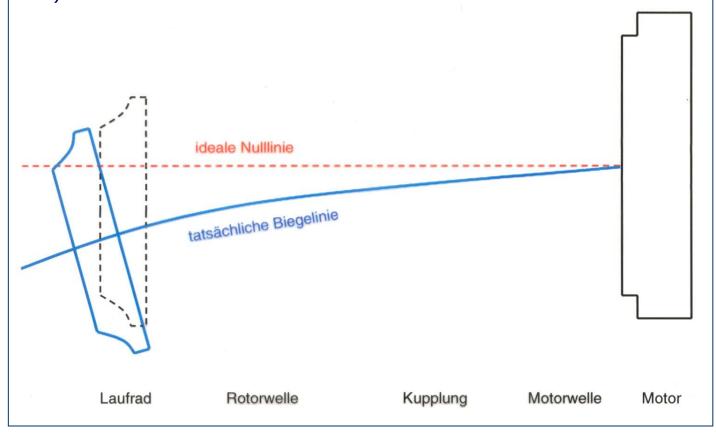

Statische
Druckverteilung
(BEP)

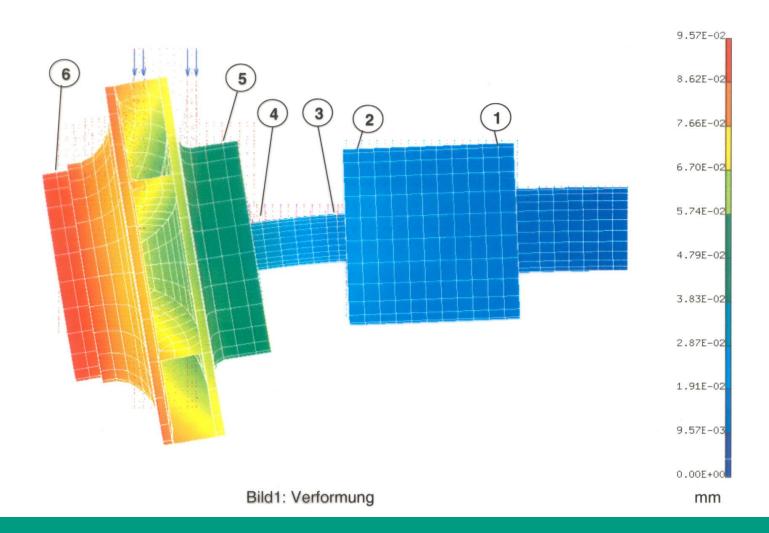
Druckverteilung



Berechnete

Radialkraft




Ø-Versatz infolge Durchbiegung - Wellenstrang -

(Maße noch nicht ermittelt)

Laufradformen - warum?

Bild 1: Radialrad mit rein radialen Schaufeln, Staupunktrad, Staupunkt S (Draufsicht ohne vordere Deckscheibe dargestellt)

Bild 2: Radialrad mit Schaufeln, die sich his in den Saugmund erstrecken (Draufsicht ohne vordere Deckscheibe dargestellt)

Bild 3: Halbaxialrad (Schraubenrad, Diagonalrad) (Draufsicht ohne vordere Deckscheibe dargestellt)

Bild 4: Halbaxialrad (halbaxialer Propeller)

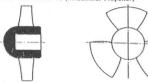


Bild 5: Axialrad (axialer Propeller)

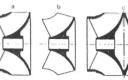


Bild 6: Zur Unterscheidung von geschlossenen und offenen, von einströmigen und zweiströmigen Laufrädern, gezeigt an einem Schraubenrad

a) geschlossenes Laufrad, einströmig; b) offenes Laufrad, einströmig; c) geschlossenes Laufrad, zweiströmig

Bild 7: Geschlossenes Einschaufelrad (Draufsicht ohne Deckscheibe dargestellt)

Bild 8: Offenes Einschaufelrad

Bild 9: Geschlos:enes Einkanalrad (Draufsicht ohne Deckscheibe dargestellt)

Bild 10: Geschlossenes Zweikanalrad (Draufsicht ohne Deckscheibe dargestellt)

Bild 11: Offenes Zweikanalrad mit S-förmigen Schau-

Bild 12: Geschlossenes Dreikanalrad (Draufsicht ohne Deckscheibe dargestellt)

Bild 13: Offenes Dreikanalrad mit zylindrischen Schaufeln

Bild 14: Freistromrad

Bild 15: Peripheralrad

Quelle: KSB Kreiselpumpenlexikon

Entwicklung einer Radialmaschine

Konstruktion von

- Welle
- Dichtelementen
- Befestigungen
- Anschlüssen zu anderen Bauelementen und zum Rohrleitungssystem

Ausblick nächste Vorlesung

- ▶ Entwurf Leitrad und Gehäuse
- Verluste und Wirkungsgrade
- Kennlinien